Fibre Laser

Hard Gold Coated Mirrors for High Power Fibre Laser Applications

Industrial Ytterbium ~1 micron wavelength near infrared fibre lasers first emerged in the late 1990’s. At this time, they were less than 10W of optical power and standard coated BK7 could be used for both reflective and transmissive beam delivery optics. During the 1990’s fibre laser development moved at a very rapid rate with 100W and then 200W lasers becoming industrially available in the early 2000’s. At these power density levels, in some applications, BK7 became infeasible due to thermal effects. There are two main effects:

High quality oxygen free fused silica with suitable dielectric coatings became the best choice for transmissive and reflective optics for these applications. Subsequently, fibre laser development has continued at an accelerating pace with up to 10kW TEM00 lasers now being offered. Similarly, the parallel technology of thin disk lasers is offering lasers with comparable power levels. These power levels present massive challenges to the design of beam processing and delivery systems, bringing in to question the survival and performance of coated fused silica optics.

A novel solution for reflective optics for high power near infrared lasers is the use of our hard gold coated copper mirrors. Hard gold coated nickel copper (NiCu) mirrors are the most widely used of all the Cu mirror types. They consist of a copper substrate, precision lapped to the required surface form, plated with a thin layer of nickel which is polished and hard gold coated. They have been industry standard in 10.6 micron CO2 laser applications for decades. They are also currently being used in multiple industrial applications with high power fibre lasers with great success. The features of hard gold coated copper mirrors include the following:

Consequently, hard gold coated NiCu reflective optics avoid the problems of thermal effects on the bulk material or coatings common with coated fused silica optics as well as bringing a host of other benefits and possibilities.